当前位置:首页 > 问答

股票数学期望公式

我来帮TA回答

关于股票收益率的期望值的计算~

我不知道你是做研究,还是实际使用
我是用个简单的算法
收益率= ((卖出价格*数量-卖出费用)-(买入价格*数量+买入费用))/ (买入价格*数量+买入费用)
到了理想值,就卖出
呵呵

期望收益率、方差、协方差、相关系数的计算公式

期望收益率,又称为持有期收益率(HPR)指投资者持有一种理财产品或投资组合期望在下一个时期所能获得的收益率。这仅仅是一种期望值,实际收益很可能偏离期望收益。 HPR=(期末价格 -期初价格+现金股息)/期初价格
方差是各个数据与平均数之差的平方的平均数
比如1.2.3.4.5 这五个数的平均数是3
方差就是 1/5[(1-3)²+(2-3)²+(3-3)²+(4-3)²+(5-3)²]=2
协方差定义1:变量xk和xl如果均取n个样本,则它们的协方差定义为 ,这里 分别表示两变量系列的平均值。协方差可记为两个变量距平向量的内积,它反映两气象要素异常关系的平均状况。
定义2:度量两个随机变量协同变化程度的方差。
协方差分析是建立在方差分析和回归分析基础之上的一种统计分析方法。
E[(X-E(X))(Y-E(Y))]称为随机变量X和Y的协方差,记作COV(X,Y),即COV(X,Y)=E[(X-E(X))(Y-E(Y))]。
协方差与方差之间有如下关系: D(X+Y)=D(X)+D(Y)+2COV(X,Y) D(X-Y)=D(X)+D(Y)-2COV(X,Y) 因此,COV(X,Y)=E(XY)-E(X)E(Y)。
协方差的性质:
(1)COV(X,Y)=COV(Y,X); (2)COV(aX,bY)=abCOV(X,Y),(a,b是常数); (3)COV(X1+X2,Y)=COV(X1,Y)+COV(X2,Y)。 由协方差定义,可以看出COV(X,X)=D(X),COV(Y,Y)=D(Y)。
相关系数是变量之间相关程度的指标。样本相关系数用r表示,总体相关系数用ρ表示,相关系数的取值范围为[-1,1]。|r|值越大,误差Q越小,变量之间的线性相关程度越高;|r|值越接近0,Q越大,变量之间的线性相关程度越低。 相关系数又称皮(尔生)氏积矩相关系数,说明两个现象之间相关关系密切程度的统计分析指标。 相关系数用希腊字母γ表示,γ值的范围在-1和+1之间。 γ>0为正相关,γ<0为负相关。γ=0表示不相关; γ的绝对值越大,相关程度越高。 两个现象之间的相关程度,一般划分为四级: 如两者呈正相关,r呈正值,r=1时为完全正相关;如两者呈负相关则r呈负值,而r=-1时为完全负相关。完全正相关或负相关时,所有图点都在直线回归线上;点子的分布在直线回归线上下越离散,r的绝对值越小。当例数相等时,相关系数的绝对值越接近1,相关越密切;越接近于0,相关越不密切。当r=0时,说明X和Y两个变量之间无直线关系。通常|r|大于0.8时,认为两个变量有很强的线性相关性。
编辑本段相关系数的计算公式
其中xi为自变量的标志值;i=1,2,…n;■为自变量的平均值, 为因变量数列的标志值;■为因变量数列的平均值。 为自变量数列的项数。对于单变量分组表的资料,相关系数的计算公式为: 相关系数计算公式
[1]? r=n(写上面)∑i=1(写下面)(Xi-X的平均数)(Yi-Y平均数)/根号下[∑(样子同上)(Xi-X平均数)的平方*∑(样子同上)(Yi-Y平均数)的平方 其中fi为权数,即自变量每组的次数。在使用具有统计功能的电子计算机时,可以用一种简捷的方法计算相关系数,其公式为: 使用这种计算方法时,当计算机在输入x、y数据之后,可以直接得出n、■、∑xi、∑yi、∑■、∑xiy1、γ等数值,不必再列计算表。

股票内在价值计算公式

现金流贴现模型是运用收入的资本化定价方法来决定普通股票的内在价值的方法。
根据公式(2.23),可以引出净现值的概念。净现值(NPV)等于内在价值(V)与成本(P)之差,即:

数学期望的股票习题 某人用10000元投资于某股票,该股票当前的价格是2元每股,假设一年后该股票等可...

是错误的,因为谁也不知道一年后的股价是多少。如果是一元每股的话,现在买就贬值了,如果是4元每股,那么以同样的价钱,一年后再买就不会比现在买的多。

股票,期望收益率,方差,均方差的计算公式

假定投资者将无风险的资产和一个风险证券组合再构成一个新的证券组合,投资者可以在资本市场上将以不变的无风险的资产报酬率借入或贷出资金。在这种情况下,如何计算新的证券组合的期望报酬率和标准差?假设投资于风险证券组合的比例(投资风险证券组合的资金/自有资金)为Q,那么1-Q为投资于无风险资产的比例。无风险资产报酬率和标准差分别用r无 、σ无 表示,风险证券组合报酬率和标准差分别用r风 、σ风 表示,因为无风险资产报酬率是不变的,所以其标准差应等于0,而无风险的报酬率和风险证券组合的报酬率不存在相关性,即相关系数等于0。那么新的证券组合的期望报酬率和标准差公式分别为:
rP = Qr风 +(1-Q)r

股票数据求数学期望或方差

天才弱智?!